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A NATO Advanced Study Institute on the topic of transition from laminar flow 
to turbulence was held at Imperial College, London, from 1 to 6 July 1968. 
Each morning’s session was started with a one-hour general lecture, and was 
followed by five or six half-hour lectures interspaced with discussion periods. 
The main lecturers were C. C. Lin (general survey), S. Rosenblat (stability of 
time-dependent flows), L. S. G. Kovasznay (turbulent, non-turbulent inter- 
faces), L. E. Scriven (free surfaceeffects) and A. A. Townsend (shear turbulence), 
The idea of the meeting was to bring forth and to discuss current ideas in the 
subject, both from the point of view of developments out oflaminar flow and from 
that of developments into real turbulence. To this end speakers were chosen to 
introduce a variety of topics ranging from laminar-flow instabilities (with em- 
phasis on aspects at present imperfectly understood), through non-linear effects 
to the processes affecting turbulence itself. 

Many ideas recurred throughout the meeting, both at lectures and in discussion 
periods. This is true, for example, of several relevant points forcefully made by 
C. C. Lin. For this reason the present account does not attempt to describe the 
proceedings of the meeting in chronological order, but rather takes an overall 
view of the subject matter and points to the areas of agreement and of controversy 
in relation to various problems. 

1. General survey of the problem 
The scene was set in a truly admirable lecture by Professor C. C. Lin of the 

Massachusetts Institute of Technology. Right at  the outset he revealed his current 
interest in instabilities which yield not transition to turbulence, but the spiral 
arms of the galaxies ! He was able, however, to use beautiful photographs of 
galaxies to illustrate some of the points which he made about our less grand, but 
equally exciting, problem. 

With one eye (possibly) on some form of turbulence, it is usual to discuss the 
stability of and to experiment upon, laminar flows which are relevant to tur- 
bulent motion under similar geometrical and dynamical conditions. Theoretical 
discussions are often concerned with the normal modes, or characteristic oscilla- 
tions of laminar flows, and it is known that such normal modes can be realized in 
experiment; examples which spring to mind are G. I. Taylor’s (1923) observations 
onrotating-cylinder flows and those of G. B. Schubauer & H. K. Skramstad (1943) 
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on boundary layers. However, the reproduction in experiment of the relatively 
simple normal modes is one thing, and turbulence is another ! Are there situations 
where the normal modes of laminar flow, or of some quasi-turbulent flow, play 
an important structural part in fully developed turbulence itself? Clearly the 
existence of such relationships would give added weight to normal-mode studies 
of the instability of laminar flow. Much current work on turbulence in shear flows 
is based on this idea, for example, that of Landahl (1967). Lin stressed the 
importance of large-scale structures persisting from laminar flow, and argued 
that this gave added weight to studies of basic non-linear (but not yet random) 
processes. 

Lin also drew attentionto theidea of what he called ‘fast’ and ‘ S ~ O W ~  transitions, 
a classification bearing a strong similarity to that of Coles (1965), who described 
‘catastrophic transition’ and ‘transition by spectral evolution’. A typical ‘fast ’ 
transition would be that arising from Tollmien-Schlichting waves in a boundary 
layer where, within the spatial confines of a single experiment, a flow can be seen 
to evolve quickly from laminar flow to turbulence. In a wake, however, a ‘slow7 
transition occurs and regular finite-amplitude motions in near equilibrium 
(vortex streets) play a dominant role; another example, of course, is the occur- 
rence of Taylor vortices between two concentric rotating circular cylinders 
when the inner is rotating and the outer is at  rest. 

Many years ago, Landau (1944) brought forward the idea of transition occurr- 
ing through successive instabilities. In  using simple modes to describe turbulence 
Landau mentioned the importance of the ‘phase’; Lin suggested that, if the 
phases are randomly distributed, comparatively few modes could be used to 
describe turbulence. He asked whether ‘bursts’ or ‘spots’ of turbulence, which 
play an important role in the late stages of transition in boundary layers, are 
responsible for momentum transfer in transitional and turbulent boundary 
layers, or whether they simply dissipate energy; and what is the relative im- 
portance of (i) ‘bursts’ of high-frequency oscillations, and (ii) developing non- 
linear modes? One is tempted to relate (i) and (ii) to ‘fast’ and ‘slow’ respectively. 

In  discussing the effects of non-linearity it is natural also to inquire about 
the relative importance of non-linear and viscous forces, Benney & Bergeron 
(1968) have developed an analysis which shows that, for a single mode, non- 
linear terms dominate over viscosity in the neighbourhood of the ‘critical layer’, 
provided that eRf is large compared with 1, where e is a non-dimensional velocity 
amplitude and R is a Reynolds number of the boundary layer. However viscous 
shear layers appear at the boundaries of the so-called Kelvin’s ‘cat’s eyes’. Lin 
explained how Benney & Bergeron used this theory to account for certain am- 
biguities in the properties of finite amplitude oscillations in mixing layers, as 
calculated by Schade (1964) and Stuart (1967). The basic idea as explained by 
Lin, and later explained at  greater length by Bergeron, is that in the neighbour- 
hood of the critical layer we can form a local Reynolds number based on the 
non-dimensional velocity e and on the characteristic thickness R-4 ; this yields 
eR%, as quoted above. 

In  the discussion which followed it was emphasized by T. Brooke Benjamin 
that jets have a more organized turbulence than do flows in a pipe, indicating 



Transition from laminar to turbulent $ow 549 

the importance of non-linear modes in the former case. It was also noted that in 
mixing layers viscosity has an important role to play in growing oscillations 
but that this viscous effect disappears in equilibrium (Stuart 1967), leaving 
non-linear effects in dominance. 

2. Developments of instabilities at small amplitude 
One or two newer developments were described and will be outlined here. 

S. Rosenblat gave a lecture on the stability of basic flows which themselves 
depend upon time. An interesting example (though not described at  the meeting) 
occurs when a can, containing water having a free surface, is oscillated vertically. 
Unstable oscillations of the free surface may be stimulated by appropriate vertical 
oscillations of the can, and the governing equation is that of Mathieu. A more com- 
plex example, not governed by such simple mathematics, occurs when the inner 
of two long concentric circular cylinders has an angular speed (n, + w,cosnt); 
by appropriate choice of o1 and n the flow can be stabilizedagainst the occurrence 
of Taylor vortices (as Donnelly ( 1964) has shown experimentally). 

There are difficulties in quantifying the statement of stability or instability, 
but one satisfactory method is to consider the ratio of the perturbation magnitude 
to the magnitude of the given flow. If the latter is U(y,t) = E(y)A( t )  in the x 
direction, the theory of Shen (1961) shows that z periodic inviscid disturbances 
are stabilized by a monotonically increasing A ( t ) ,  but destabilized by a mono- 
tonically decreasing A ( t ) .  The governing equation for a disturbance #eiax is 
(a/at +iaU) (q& - a2#) + iaU,,# = 0. In inviscid flow, the disturbance is pro- 
portional to 

, if U = i i ( y ) A ( t ) ,  

where c is a complex number and a is the wave-number in the x direction. 
The result quoted above follows when we consider (d/dt) (BIA). If A(t )  is periodic 
in time B is bounded, so that no true instability results. However, as pointed 
out in the discussion, the amplitude may become very large, and quasi-steady 
instability theoreies for some time interval may be relevant in giving, if not true 
instability, at  least growth to large-amplitude. By then non-linearity would be 
important. 

The class of flows described in the previous paragraph is rather special. A more 
typical example is the Stokes shear layer 

which has a phase dependent on y .  Such a flow may be represented by the sum 
of two terms like E(y) A(t) ,  and S. Rosenblat stated that such flows are destabilized 
by the phase dependence on y (if vorticity is present). It is necessary to study a 
system of equations of Mathieu type. Problems when a mean flow is also present 
have been studied by Kelly (1965), who showed that parametric resonances can 
occur. 
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Dr M. Gaster discussed the development of localized regions of fluctuation 
by synthesis from Fourier modes of the Orr-Sommerfeld stability problem for 
steady flows; he was able to show how wave packets, according to this linearized 
theory, evolve within the confines of a wedge stemming from the point of origin. 
For a Blasius layer the wedge semi-angle is about 11” which is fairly close to the 
angles of wedges enveloping ‘spots’ of turbulence, but observed velocities of 
such spots are higher than is predicted by linearized theory. It would be of 
great interest to inject non-linearities into the mathematical descriptions of 
local wave packets, but this has not so far been done. 

In  his lecture on the development of unstable waves of the form eia(z-ct) in 
free shear layers, Dr A. Michalke emphasized the importance of modes with 
complex a as being especially relevant in comparison with experiment. Experi- 
mentally, he could follow such growing modes in mixing regions over a dis- 
tance of about four wavelengths before they broke up into turbulence. Dr 
Michalke also spoke of the role of vorticity conservation in two-dimensional 
flow, and commented upon the violation of this brought about by linearization. 

Professor A. Faller introduced the topic of the instabilities of Ekman layers. 
Such flows have long been known to exhibit instabilities (type I) associated with 
inflexion points (vorticity maxima) of the velocity profile in the direction of 
propagation of wavy disturbances. Another mode of instability (type 11)) driven 
by Coriolis forces associated with the perturbation, is now known to produce 
instability and generate waves at a lower Reynolds number than the vorticity 
mechanism. Whereas the type I modes are frequently stationary, those of type I1 
are travelling waves. Further experimental work has shown the type I1 modes to 
occur on a rotating disk (Gregory, Stuart &Walker 1955), and Professor Faller has 
identified a secondary instability of the type I1 waves, possibly due to centrifugal 
effects. Applications to the thermal wind indicate that vortices could be produced 
by the type I1 mechanism, in accordance with observation. 

Dr S. H. Davis described a rigorous perturbation scheme for deriving a 
‘principle of exchange of stabilities’ for a wide class of instability problems, 
and has treated several hitherto unsolved cases associated with thermal con- 
vection and rotating cylinder instabilities. In  brief this principle establishes that 
instability, when it occurs, does so as a monotonic growth and not as oscillations. 

3. Non-linear processes affecting normal modes 
Dr H. Sat0 gave a very comprehensive and interesting account of his experi- 

ments on transition processes in wakes, jets and mixing regions. For several reasons 
he regarded the wake as the flow, typical of those with no solid boundaries, where 
transition can be studied in the most controlled manner. He first described 
experiments in which the wake was stimulated by sound of a given single fre- 
quency, and noted that in the downstream region the amplitude of resulting wake 
fluctuations was independent of the forcing amplitude, suggesting that a ‘natural’ 
amplitude of the non-linear wake had been attained;’ frequency doubling took 
place due to harmonic generation. There was a dip in longitudinal velocity on t.he 
centre line. 
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In  other, more detailed experiments, Dr Sat0 described how the wake responded 
when two frequencies, one 10% greater than the other, were superimposed. 
These two frequencies (n, and n2) were chosen to give a maximum interaction 
effect between the modes. There was a maximum r.m.s. fluctuation velocity 
on the centre line of the wake, which was found to be principally associated with 
the frequency n, - n2, in accordance with the idea that the fundamental linearized 
modes are antisymmetrical, whereas the harmonics (and mixed harmonics) 
of n1 and n2 are symmetrical. Harmonics of nl-n, also became important 
elsewhere in the flow. The use of these two frequencies, suitably chosen, gave a 
much closer representation of natural transition than did the use of one mode, 
presumably due to the increased spread of energy in the frequency spectrum. 
Notable was the occurrence of a saw-toothed wave, with superimposed random 
oscillations, before transition. 

Discussion centred on the mechanism by which shear oscillations in a wake 
are generated by sound. The common view that the shear oscillation takes the 
same frequency as the sound, but picks out its natural shear wavelength was 
opposed by the idea that it is the diffraction of the sound wave at the trailing 
edge of the airfoil (producing the wake flow), which yields the appropriate 
smaller length scale of the shear oscillations. More work clearly is needed on 
such processes. 

Professor I. Tani, in a paper on transition in boundary layers, described the 
role of the relatively large spanwise variations brought about by streamwise 
vortices in the transition region; contrary to earlier work of Klebanoff et al. 
(1962), who found that peaks in r.m.5. longitudinal velocity occurred whenever 
the streamwise vortices involved motion away from the wall, in association with 
horizontal shear layers; Professor Tani described experiments of H. Komoda 
in which breakdown is preceded by a vertical shear layer at a position nearer to a 
valley. In  some experiments conducted with small spanwise variations no 
velocity spikes (regions of high-frequency velocity fluctuation) appeared. 

With regard to non-linear effects in the so-called parallel flows, J. T. Stuart 
paid particular attention to the ‘subcritical effect’ in plane Poiseuille flow; 
below the critical Reynolds number of linearized theory, oscillations can grow 
provided their amplitude lies above some threshold value. Calculations of 
Reynolds & Potter (1967) and of Pekeris & Shkoller (19657, based on the theory 
of Stuart (1960) and Watson (1960), have established this both for the case of 
constant pressure gradient and for that of constant mass flux. Moreover, Reynolds 
& Potter did a trial calculation suggesting that the generation of harmonics 
does not play an important qualitative role in this process; rather the important 
effects are the modification of the mean flow by the Reynolds stress of the oscilla- 
tion, coupled with a consequent modification of the fundamental shear-wave 
oscillation itself. This confirms the assumption made earlier by Meksyn & Stuart 
(1951), and thus the important physical truth of this finite-amplitude process 
is established. Different speakers, especially W. C. Reynolds, emphasized the 
possible important influences of three-dimensionality and of any change with 
amplitude of the wavelength of the oscillation. These effects require further in- 
vestigation. 
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W. C. Reynolds described the use of stability theory to suggest the importance 
of organized wave motions in turbulent shear flows of various kinds. A linear 
model was described, but the effect of background turbulence on the wave motions 
was kept through use of an eddy viscosity. Although the model for eddy vjs- 
cosity was argued from rather basic mechanical principles, the upshot is that 
the governing wave stability equation is the Orr-Sommerfeld equation with 
a viscosity (here regarded as the eddy viscosity) which is a function of the co- 
ordinate in the direction of shear. Since the eddy viscosity is much higher than 
the molecular kinematic viscosity, the corresponding Reynolds numbers (eddy 
Reynolds numbers) based on eddy viscosity are much lower conventional Rey- 
nolds numbers. 

Reynolds applied his theory to the two-dimensional flow behind a grid of 
equally spaced long circular cylinders, assuming a constant eddy viscosity, 
and found that the critical eddy Reynolds number (for neutral stability) was 
within a few per cent of the actual eddy Reynolds number inferred from experi- 
ments of Gran Olsson (1936). This led Reynolds to suggest the principle that the 
critical eddy Reynolds number in his theory gives the eddy viscosity of the actual 
turbulent flow. However, it can be argued, as Reynolds does in other cases, that 
the non-linear growth of the waves is also relevant (possibly to a quasi-equilibrium). 

Reynolds’s calculations indicated the large degree to which Reynolds stresses 
(and therefore energy transfer) can be affected by the eddy viscosity distribution. 
He applied the theory to the problem of wind-generated water waves, the cal- 
culated air Reynolds stress (according to the above theory) being too high by a 
factor of 10 compared with quoted experiments of R. H. Stewart. Direct non- 
linear wave effects may be relevant. This line of investigation promises to be one 
of great importance, even though more work is still needed. 

D. Coles described briefly his well-known experimental work (1965) on the 
development of complex wave motions between concentric circular cylinders 
when the inner is rotating and the outer is at rest. He emphasized the numerous 
hysteresis loops between different states obtaining by variations in rotation 
speeds. A primary problem here is that of explaining the instability of the Taylor 
vortices; J. T. Stuart described the work of Davey, DiPrima & Stuart (1968), 
which shows that the wavy vortex motion can arise as a natural instability of 
(or mathematical branching from) the Taylor vortex flow. Reasonable agreement 
with experiment was obtained. Many problems remain, both of a mathematical 
and a physical character, and this relatively simple flow configuration still 
presents a formidable test for non-linear theories of fluid processes. 

Much interest in the non-linearity of fluid flow behaviour is directed, however, 
towards convection in its various forms, because of its importance in geophysics 
and chemical engineering. Several lectures were devoted to these topics, and in 
this section we are concerned with those relating to normal modes; effects of 
randomness will be described later. 

E. L. Koschmieder showed photographs of convection patterns in a horizontal 
layer of fluid heated from below. ‘Rolls’ were produced. They were concentric 
circles when a container of circular shape was used, but with a square container 
square cells could appear. He emphasized that, when hexagonal cells occur, the 
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driving mechanism is almost always the variation of surface tension with tem- 
perature, rather than the buoyancy force associated with an unstable temperature 
gradient in the vertical: a notable exception exists, however, in theexperiments of 
Dr Ruby Khrishnamarti, who obtained hexagonal cells between parallel plates 
when the mean temperature was allowed to rise uniformly, and then buoyancy 
certainly produced hexagonality . Among other points emphasized by Dr Kosch- 
mieder is the need to evaluate the change to greater wavelengths with increase 
of amplitude, a phenomenon which may be associated with the presence of 
lateral boundaries. (A related problem defined by Coles is that of explaining 
the increase in Taylor vortex wavelength with amplitude in his experiments 
on circular Couette flow; here the finite length of the cylinders presumably 
corresponds to  the lateral boundaries in convection.) 

In  further explanation of her experiments, Dr Khrisnamarti said that they 
were done with two conducting planes as upper and lower boundaries, the uni- 
form rate of increase of the mean temperature being equivalent mathematically 
to a uniform heat source in the fluid. Hexagonal cells were produced by a sub- 
critical or threshold, phenomenon, below the critical Rayleigh number. After 
a long time, however, the convection pattern in the box became one of parallel 
roll cells. 

L. A. Segel gave an enlightening account of various situations in which nature 
gives rise to patterns of a hexagonal form, before going on to elucidate and des- 
cribe in detail the evolution of hexagonal cell patterns in thermal convection. 
The presence of hexagons depends very much on vertical asymmetries due, 
for example, to the variation of surface tension or viscosity with temperature, 
and Dr Segel explained how, because of such variations, two-dimensional and 
appropriate ‘rectangular’ modes can reinforce themselves to produce hexagons 
even below the ‘critical’ Rayleigh number of linearized theory. As the Rayleigh 
number is raised hexagonal cells, which are preferred just below and above the 
‘critical’ Rayleigh number, are replaced by two-dimensional roll cells. Further 
experimental checks of this theoretical result are required. One important way 
in which theory accounts for experiment is in their agreement that fluid move- 
ment on the cell’s central axis is in the direction of increasing viscosity. 

Dr Segel also indicated that recent work done by W. Eckhaus, R. C. DiPrima 
and himself shows that, if two modes of the same type (two-dimensional rolls) 
are allowed to interact, the non-linearity in the system spreads energy very 
strongly to many other wavelengths: in fact, it is not possible to restrict attention 
to, say, two modes only of different wavelengths. 

In  discussion of Segel’s paper several speakers emphasized the role of the 
initial pre-convective condition, especially in relation to any discussion of a 
continuous spectrum of disturbance modes. Professor E. Palm in a later lecture 
also stressed the role of non-linear interactions in support of Segel’s view. 

D. Lortz described some theoretical work on the effects on convection of 
rotation about a vertical axis, where, once more, a subcritical phenomenon is 
possible, with a threshold amplitude for instability. Experimental evidence 
was illustrated at length by Dr T. Rossby. He found the experimental value of 
the rotation parameter (the Taylor number) beyond which a subcritical pheno- 
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menon occurs, to be much higher than the value given by Lortz’s theory. There 
is some agreement, however, with Veronis’s theory for ‘free’ (as contrasted with 
the experimental ‘rigid’) boundaries, as to the critical Taylor number defined 
above. 

Convection between parallel planes at  high Rayleigh number, when the cells 
are conceived as having an inviscid core surrounded by a boundary layer, was 
analyzed from a theoretical point of view by D. J. Tritton, especially, and by 
J. L. Robinson. Tritton’s ideas were developed with particular reference to an 
attempt to show why convection cells have a greater lateral dimension when 
generated within a fluid with heat sources, than in the more conventional 
BBnard case of a fluid heated from below. Some success in this direction was 
reported. J. L. Robinson emphasized differences between his own model and 
those of Pillow (1949) and Tritton. The problem is still clouded by controversy, 
not least in reference to possible occurrence of a form of boundary layer separa- 
tion. D. Coles drew attention to some recent work, due to P. Wesseling, extending 
and confirming Batchelor’s (1960) analysis of the corresponding rotating cylinder 
problem (Taylor vortices a t  large Taylor number). 

4. Turbulent-non-turbulent interfaces, transition and turbulence 
It is well known that turbulent and transitional flows often of necessity possess 

regions of sharp change between laminar and turbulent zones of flow, or between 
non-turbulent (e.g. potential) and turbulent regions of flow. In  his lecture 
Dr L. S. G .  Kovasznay chose to emphasize the latter type of interface. First of 
all, he described the use of a new, conditional sampling technique for turbulence 
measurements, involving the use of two hot-wire probes. By assessing continually 
the state of flow (as to whether it was turbulent or not) he was able to derive from 
measurements the statistics of the flow on both sides of the turbulent-non- 
turbulent interface. This is especially relevant since, at  the probe, the flow varies 
from turbulent to non-turbulent at  different stages, as the contorted interface, 
or ‘superlayer’, pursues its random oscillations. The new technique enabled a 
model to be built up of the flow in the neighbourhood of the interface. 

Among results found experimentally by Kovasznay are the following. Inside 
the interface the flow has nearly uniform mean vorticity, so that the velocity 
gradient there is uniform. There is no velocity jump so that the interface is not a 
layer of high vorticity or vortex sheet. It is in fact a layer on which there is sharp 
vorticity gradient, the exterior flow being irrotational. At a fixed point the mean 
velocity when there is turbulence is less than that when there is no turbulence 
by about 6 or 7 yo of the speed of the free stream. Moreover, the magnitude of the 
turbulent velocity fluctuations within the boundary layer is of order twice that 
of the non-turbulent fluctuations outside. 

Finally, Kovasznay suggested that the sublayer (on the solid wall) affected 
the interface (or superlayer) in the following way. Bursting events within the 
three-dimensional sublayer (of Kline et al. 1967) cause a lifting up of retarded 
fluid into the main body of the boundary layer. The superlayer is contorted by 
the necessity to ride over the ‘ lumps’ of slightly retarded fluid. 
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Possible sequences of events by which a laminar flow can evolve to turbulence 
were treated by I. Tani, with reference to the work of P. S. Klebanoff, L. S. G. 
Kovasznay and their co-workers, as well as to his own experiments. This matter 
has been surveyed elsewhere (Stuart 1965) and here we refer to new knowledge 
arising since that date. As in the earlier work, streamwise vortices play a domin- 
ant role in the flow development but, in a contrasting feature revealed by Komoda 
(1967), transition may be preceded by strong concentrations of vorticity normal 
to the plate. This vertical shear layer appeared subsequently to the horizontal 
shear layer observed by the earlier experiments. Its importance for embryo 
turbulent spot development remains to be assessed. Professor Tani also re- 
assured his audience that Tokyo turbulent spots are very similar to Washington 
turbulent spots, even in detail; for this assessment he used the conditional sampl- 
ing technique of Kovasznay, which was mentioned earlier in this section. In  
another lecture on transition, Dr F. X. Wortmann discussed especially the 
application of the Tellurium technique for visualization of the ‘peak valley’ 
streamwise vortex system of Klebanoff, Kovasznay and Tani. 

G. Lespinard outlined his experiments on the effects of boundary-layer 
suction on the transition processes described above. Broadly speaking suction 
does not affect the qualitative nature of the transition process, although it re- 
duces the rate of growth of waves and of the associatedlongitudinal vortex system, 
and renders the actual occurrence of embryo turbulent spots less explosive. 
Clearly it would be desirable to relate the quantity of suction required to the 
known magnitudes of secondary flow (longitudinal vortex) velocities. 

5. Thermal turbulence and turbulent shear flows 
In  a general lecture Dr A. A. Townsend described his outlook on turbulence 

a t  the present time, noting initially the importance of similarity by reference 
to  P. Bradshaw’s calculations of turbulent boundary layers by use of the energy 
equation. Dr Townsend described in detail the varied aspects of turbulence in 
boundary layers contrasted with the free turbulence in jets and wakes. The role of 
different eddy structures was noticed. 

Dr John Elder gave an account of observations and computational experi- 
ments related to thermal turbulence in a horizontal layer of fluid heated from 
below. The seat of the genesis of the turbulence lay in small random motions 
within a sublayer on the lower boundary, in accordance with the ideas of Howard 
(1964). Randomness was deliberately introduced by Elder into his computer 
calculations. The computation illustrated the eruption and breakoff of ‘tur- 
bulent’ blobs from the lower boundary. Even though the computations were 
for two-dimensional flow there was considerable qualitative comparison with 
experimental observations. 

Three speakers, L. N. Howard, F. Busse and W. V. R. Malkus, devoted their 
efforts to the remarkably effective line of enquiry, initiated by Howard (1963) 
some years ago, in which upper bounds are sought on some property, such as heat 
or momentum, which is transported by turbulence. Originally it was applied 
by Howard to thermal turbulence between two horizontal planes, in an attempt 
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to justify rigorously the physico-mathematical ideas of W. V. R. Malkus on 
turbulent processes and structure. Although the original intention was not 
achieved, this type of analysis proved its own intrinsic worth. More recently, 
F. Busse, in particular, has applied related ideas to shear flow turbulence. 

In  a lecture summarizing the present state of these theories Howard explained 
how his ideas of 1963 have been modified. Then the upper bound or Nusselt 
number, obtained from an integral constraint subject to the continuity was found 
to be proportional to the $ power of the Rayleigh number. Stimulated by F. 
Busse, Howard included more than one wave-number in his calculations and 
obtained a power of &$ or for 2 or 3 wave-numbers respectively! Both 
Howard and Malkus elaborated on other aspects of this work, while Busse applied 
developed ideas to shear flows as well as to thermal turbulence. 

6. Other problems related to that of transition to turbulence 
An interesting and stimulating lecture on free-surface effects was given by a 

chemical engineer, Dr L. E. Scriven, who described many aspects of wave motion, 
instability and turbulence, especially in relation to interfacial phenomena 
between different fluid phases. He drew attention to the importance of surface 
tension gradients, of the Gibbs surface elasticity, of compositional surface 
viscosity (associated with a soluble surfactant) and of structural surface viscosity 
(associated with monomolecular layers). He also drew attention to the little- 
studied problem of the formation of waves on rivulets, as on the windscreen 
of a car, for example. The complexity, over and above that of liquid films running 
on an inclined plane under gravity, is associated with the limited lateral expect 
of the rivulet. The now well-known phenomenon of surface-tension gradients as 
a mechanism for instability was also elaborated. 

In  discussion after this lecture, T. Brooke Benjamin quoted some observa- 
tions on rivulets under a plane, namely that they could be unstable at  low 
Reynolds numbers, stable at intermediate Reynolds numbers and turbulent 
at higher Reynolds numbers. In response to a question by M. J. Lighthill, Dr 
Scriven explained that ‘active’ stresses could be important in producing motion 
in small organisms. 

In a remarkable film strip Dr Scriven showed a vortex ring incident on a free 
surface of water from below and being reflected as another vortex ring, whose 
direction of motion was inclined at  a different angle from the first! He des- 
cribed this as ‘the scattering of vortons by an interface by production of 
riplons’. 

Dr P. G. Saffman explained his (1962) theory of instability in the flow of a 
dusty gas, and extended the ideas to a discussion of shear flow turbulence in a 
pipe. Interestingly he found a small increase in the mass flow due to the presence 
of the dust, with an increase in velocity gradient at  the wall. This is in accordance 
with experimental evidence that the pressure drop in a pipe is reduced by dust, 
for a given mass flow. 

Vortex breakdowns, and the multitudinous theories of their character, were 
described by Dr H. Ludwieg. He paid attention especially to his own theory of 
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the breakdown, as being due to an instability of the swirling and translating flow, 
but referred also to the work of M. G. Hall (as a phenomenon analogous to ‘separa- 
tion’), H. B. Squire, Benjamin (conjugate flow theory) and Lambourne. This 
topic still stands unresolved, but is becoming increasingly dominated by 
Benjamin’s conjugate-flow theory. 

The phenomenon of water-wave breaking was catalogued and illustrated very 
ably by T. Brooke Benjamin, who drew attention to ‘plunging’ and ‘spilling’ 
forms of breaking, the former being the violent form with a vertical face, and the 
latter being a development out of the Stokes 120” angled wave. The role of Taylor 
instability at an accelerating interface was mentioned as a mechanism for 
bringing about ‘ turbulence’ in wave breaking. 

‘Billows’, at  the interface of a two phase fluid system were illustrated by S. A. 
Thorpe, while J. W. Miles talked on the topic of instabilities of lee waves. 
Rigorous theorems on instability were considered by M. Cotsaftis, with charac- 
teristic verve. 

A final summary lecture was given by M. J. Lighthill, drawing attention to 
many of the points posed above in a manner aimed at  showing up connexions 
and interrelations between them as far as possible. This summary was later 
refined and extended to become a part of his general lecture on ‘Turbulence’ 
given at  the Osborne Reynolds Centenary (Lighthill 1969). 

Lectures presented at the NATO Advanced Study Institute 
Benjamin, T. B. Wave breaking. 
Busse, F. H. Upper bounds on the transport of heat, mass and momentum 

by turbulent flows. 
Coles, D. Curved Aows. 
Cotsaftis, M. General theorems on stability. 
Davis, S. H. On the principle of exchange of stabilities. 
Elder, J. Convection in thermal turbulence. 
Faller, A. Coriolis-driven instability. 
Gaster, M. The development of three-dimensional wave packets in shear 

Howard, L. N. Thermal turbulence. 
Koschmieder, E. L. Cellular convection. 
Kovasznay, L. S. G. Turbulent and non-turbulent interfaces. 
Lespinard, G. Effects of suction on the mechanism of boundary-layer 

Lighthill, M. J. Concluding summary. 
Lin, C. C. General survey. 
Ludwieg, H. Vortex breakdown. 
Malkus, W. V. R. Bounds on absolute stability. 
Michalke, A. Instability in mixing regions. 
Miles, J. W. Instabilities of lee waves. 
Palm, E. Non-linear interactions. 
Reynolds, W. C. The stability of organized waves in turbulent shear flows. 

flows. 

transitions. 
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Rosenblat, S. Stability of time-dependent flows. 
Rossby, T. Convection with rotation. 
Saffman, P. G .  Dusty gases. 
Sato, H. Transition in wakes, jets and mixing regions. 
Scriven, L. E. Free surface effects. 
Segel, L. A. Emergence of cellular patterns. 
Stuart, J. T. Non-linear effects in parallel flows. 
Tani, I. Boundary layer transition. 
Thorpe, S. Billows. 
Townsend, A. A. Shear turbulence. 
Tritton, D. J. Convection. 
Wortmann, F. X. Visualization of transition. 
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